
CS106B
Winter 2017

Handout #25
March 13, 2017

Section Handout 9

This final section handout consists of a bunch of cumulative review problems from throughout the quar-
ter. Feel free to work on whatever seems interesting or useful!

In a break from tradition, we have not compiled solutions for these problems. If you’re unsure how to
solve any of these problems, ask your section leader for input or stop by the CLaIR for assistance!

Week One: Basic Recursion and String Processing

1. Write a function that reverses a string “in-place.” That is, you should take the string to reverse as a
reference parameter and modify it so that it ends up holding its reverse. Your function should use
only O(1) auxiliary space.

2. Imagine you have a string containing a bunch of words from a sentence. Here’s a nifty little algo-
rithm for reversing the order of the words in the sentence: reverse each individual string in the
sentence, then reverse the entire resulting string. (Try it – it works!) Go and code this up in a way
that uses only O(1) auxiliary storage space.

3. The binary search algorithm is a fast algorithm for finding an element in a sorted array. It works
like this. First, look in the middle of the array. If that element is the one you’re looking for, you’re
done! Otherwise, if the element in the middle is bigger than the element you’re looking for, since
the array is sorted, if the element is anywhere at all, it’s in the first half of the array, so look there.
Otherwise, look in the second half of the array. Oh, and if your array is empty, then the element
you’re looking for isn’t there.

Implement binary search, both recursively and iteratively. What’s the runtime of your solution?
Can you get it to work in worst-case time O(log n)?

4. Suppose that you are interested in setting up a collection point to funnel rainwater into a town's
water supply. The town is next to a ridge, which for simplicity we will assume is represented as
an array of the elevations of different points along the ridge.

When rain falls on the ridge, it will roll downhill along the ridge. We'll call a point where water
naturally accumulates (that is, a point lower than all neighboring points) a “good collection point.”
For example, here is a possible ridge with good collection points identified:

11 8 4 2 5 3 12 10 14 15 6

Write a recursive function to find a good collection point. See if you can solve this with a solution
that runs in time O(log n). As a hint, think about binary search. You can assume that all elements
in the array are distinct.

1 / 4

Week Two: Container Classes

1. Write a function that, given a Map<string, int> associating string values with integers, pro-
duces a Map<int, Set<string>> that’s essentially the reverse mapping, associating each integer
value with the set of strings that map to it. (This is an old job interview question from 2010.)

2. How are Map and HashMap implemented internally? What’s one advantage of Map over HashMap?
One advantage of HashMap over Map?

3. A compound word is a word that can be cut into two smaller strings, each of which is itself a
word. The words “keyhole” and “headhunter” are examples of compound words, and less obvi-
ously so is the word “question” (“quest” and “ion”). Write a function that takes in a Lexicon of all
the words in English and then prints out all the compound words in the English language.

Week Three: Graphical Recursion and Recursive Problem-Solving

1. The Sierpinski carpet is a fractal image in the shape of a square. An order-0 Sierpinski carpet is
just an empty square. An order-(n+1) Sierpinski carpet can be formed by subdividing a square
into nine smaller squares in a 3 × 3 grid, filling the central square black, then recursively drawing
order-n Sierpinski carpets in each of the remaining grid cells. Here are Sierpinski carpets of or-
ders 0, 1, 2, 3, 4, and 5:

Write a function to draw an order-n Sierpinski carpet in a given window.

2. Imagine you have a 2 × n grid that you’d like to cover using 2 × 1 dominoes. The dominoes need
to be completely contained within the grid (so they can’t hang over the sides), can’t overlap, and
have to be at 90° angles (so you can’t have diagonal or tilted tiles). There’s exactly one way to tile
a 2 × 1 grid this way, exactly two ways to tile a 2 × 2 grid this way, and exactly three ways to tile a
2 × 3 grid this way (can you see what they are?) Write a recursive function that, given a number n,
returns the number of ways you can tile a 2 × n grid with 2 × 1 dominoes.

Week Four: Recursive Enumeration

1. Given a positive integer n, write a function that finds all ways of writing n as a sum of nonzero
natural numbers. For example, given n = 3, you’d list off these options:

3 2 + 1 1 + 2 1 + 1 + 1

2. Solve the previous problem assuming that order doesn’t matter, so 1 + 2 and 2 + 1 would be
treated identically. See if you can find a way to do this that doesn’t generate the same option more
than once.

3. Write a function that, given a list of distinct strings and a number k, lists off all ways of choosing
k elements from that list, given that order does matter. For example, given the objects A, B, and C
and k = 2, you’d list

A, B A, C B, A B, C C, A C, B

2 / 4

Week Five: Recursive Backtracking, Big-O and Sorting

1. One of the problems from the “Container Classes” section of this handout discussed compound
words, which are words that can be cut into two smaller pieces, each of which is a word. You can
generalize this idea further if you allow the word to be chopped into even more pieces. For exam-
ple, the word “longshoreman” can be split into “long,” “shore,” and “man,” and “whatsoever” can
be split into “what,” “so,” and “ever.” Write a function that takes in a word and returns whether it
can be split apart into two or more smaller pieces, each of which is itself an English word.

2. You are standing on the upper-left corner of a grid of nonnegative integers. You’re interested in
moving to the lower-right corner of the grid. The catch is that at each point, you can only move
up, down, left, or right a number of steps exactly equal to the number you’re standing on. For ex-
ample, if you were standing on the number three, you could move exactly three steps up, exactly
three steps down, exactly three steps left, or exactly three steps right. (You can’t move off the
board). Write a function that determines whether it’s possible to get from the upper-left corner
(where you’re starting) to the lower-right corner while obeying these rules.

3. The pancake sorting problem from the midterm asked you to see whether it was possible to sort a
stack of pancakes within k flips, for some number k. This problem is a lot easier to solve if you
don’t have the upper limit. Write a function that takes in a stack of pancakes and sorts it, provided
that the only legal move you can make is to put a spatula under one of the pancakes, then flip it
and all the pancakes above it upside down.

Week Six: Dynamic Arrays

1. The int type in C++ can only support integers in a limited range (typically, -231 to 231 – 1). If you
want to work with integers that are larger than that, you’ll need to use a type often called a big
number type (or “bignum” for short). Those types usually work internally by storing a dynamic
array that holds the digits of that number. For example, the number 78979871 might be stored as
the array 7, 8, 9, 7, 9, 8, 7, 1 (or, sometimes, in reverse as 1, 7, 8, 9, 7, 9, 8, 7). Implement a
bignum type layered on top of a dynamic array. Your implementation should provide member
functions that let you add or multiply together two bignums. (Hint: start with addition, then use
that to implement multiplication).

2. Implement a version of the Grid type that supports creating a grid of a certain size, reading from
grid locations, and writing to grid locations. Do all your own memory management.

Week Seven: Linked Lists

1. Write a function that, given a pointer to a singly-linked list and a number k, returns the kth-to-last
element of the linked list (or a null pointer if no such element exists). How efficient is your solu-
tion, from a big-O perspective? As a challenge, see if you can solve this in O(n) time with only
O(1) auxiliary storage space.

2. Write an implementation of insertion sort that works on singly-linked lists.

3. Imagine that you have two linked lists that meet at some common point in a Y shape (the head
pointer of each linked list would be on the top of the Y, and they merge at a common node).
Write a function that finds their intersection point. The “branches” of the Y don’t have to have the
same lengths, and the elements stored within the linked lists might coincidentally match even be-
fore their intersection point. As a challenge, see if you can do this in O(1) auxiliary space.

3 / 4

Week Eight: Trees and Hashing

1. A binary tree (not necessarily a binary search tree) is called a palindromic tree if it’s its own mir-
ror image. For example, the tree on the left is a palindromic tree, but the tree on the right is not:

Write a function that takes in a pointer to the root of a binary tree and returns whether it’s a palin-
drome tree.

2. (The Great Tree List Recursion Problem, by Nick Parlante) A node a binary tree has the same
fields as a node in a doubly-linked list: one field for some data and two pointers. The difference is
what those pointers mean: in a binary tree, those fields point to a left and right subtree, and in a
doubly-linked list they point to the next and previous elements of the list. Write a function that,
given a pointer to the root of a binary search tree, flattens the tree into a doubly-linked list without
allocating any new cells. You’ll end up with a list where the pointer left functions like the prev
pointer in a doubly-linked list and where the pointer right functions like the next pointer in a
doubly-linked list.

3. Suppose you insert the numbers 1, 2, 3, 4, 5, …, n into one hash table, then insert the numbers n,
n-1, n-2, …, 3, 2, 1 into another hash table. Assuming the hash tables are implemented the same
way, is it guaranteed that the internal structure of the two hash tables will be the same? Is it possi-
ble that their internal structure will be the same? Is it never going to be the case that the internal
structure will be the same?

Week Nine: Graphs and Graph Algorithms

1. Explain how question (2) from the section on Recursive Backtracking in this handout is essentially
a graph search problem, then explain how to solve it using breadth-first search.

2. Imagine you have a graph representing a social network. Your friends are the people one hop away
from you. Someone would be considered a “friend of a friend” if they were two hops away from
you (and also not zero or one hops away from you), and someone would be considered a “friend of
a friend of a friend” if they were three hops away from you (and also not zero, one, or two hops
away from you). Write a function that, given the graph and a number k, returns everyone who is a
kth-order friend of yours.

4 / 4

	Week One: Basic Recursion and String Processing
	Week Two: Container Classes
	Week Three: Graphical Recursion and Recursive Problem-Solving
	Week Four: Recursive Enumeration
	Week Five: Recursive Backtracking, Big-O and Sorting
	Week Six: Dynamic Arrays
	Week Seven: Linked Lists
	Week Eight: Trees and Hashing
	Week Nine: Graphs and Graph Algorithms

